Forming Heterogeneous Groups for Intelligent Collaborative Learning Systems with Ant Colony Optimization
نویسندگان
چکیده
Heterogeneity in learning groups is said to improve academic performance. But only few collaborative online systems consider the formation of heterogeneous groups. In this paper we propose a mathematical approach to form heterogeneous groups based on personality traits and the performance of students. We also present a tool that implements this mathematical approach, using an Ant Colony Optimization algorithm in order to maximize the heterogeneity of formed groups. Experiments show that the algorithm delivers stable solutions which are close to the optimum for different datasets of 100 students. An experiment with 512 students was also performed demonstrating the scalability of the algorithm.
منابع مشابه
A hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection
A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...
متن کاملA Hybrid Dynamic Programming for Inventory Routing Problem in Collaborative Reverse Supply Chains
Inventory routing problems arise as simultaneous decisions in inventory and routing optimization. In the present study, vendor managed inventory is proposed as a collaborative model for reverse supply chains and the optimization problem is modeled in terms of an inventory routing problem. The studied reverse supply chains include several return generators and recovery centers and one collection...
متن کاملDynamic Multi-Objective Navigation in Urban Transportation Network Using Ant Colony Optimization
Intelligent Transportation System (ITS) is one of the most important urban systems that its functionality affects other urban systems directly and indirectly. In developing societies, increasing the transportation system efficiency is an important concern, because variety of problems such as heavy traffic condition, rise of the accident rate and the reduced performance happen with the rise of p...
متن کاملA systematic approach for estimation of reservoir rock properties using Ant Colony Optimization
Optimization of reservoir parameters is an important issue in petroleum exploration and production. The Ant Colony Optimization(ACO) is a recent approach to solve discrete and continuous optimization problems. In this paper, the Ant Colony Optimization is usedas an intelligent tool to estimate reservoir rock properties. The methodology is illustrated by using a case study on shear wave velocity...
متن کاملUser-based Vehicle Route Guidance in Urban Networks Based on Intelligent Multi Agents Systems and the ANT-Q Algorithm
Guiding vehicles to their destination under dynamic traffic conditions is an important topic in the field of Intelligent Transportation Systems (ITS). Nowadays, many complex systems can be controlled by using multi agent systems. Adaptation with the current condition is an important feature of the agents. In this research, formulation of dynamic guidance for vehicles has been investigated based...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006